Friday, July 30, 2010

Jet fuel toxicity: skin damage measured by 900-MHz MRI skin microscopy and visualization by 3D MR image processing.

Jet fuel toxicity: skin damage measured by 900-MHz MRI skin microscopy and visualization by 3D MR image processing.
Sharma R, Locke BR.
Magn Reson Imaging. 2010 Jul 19. [Epub ahead of print]

Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Department of Chemical-Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA.

Abstract

The toxicity of jet fuels was measured using noninvasive magnetic resonance microimaging (MRM) at 900-MHz magnetic field. The hypothesis was that MRM can visualize and measure the epidermis exfoliation and hair follicle size of rat skin tissue due to toxic skin irritation after skin exposure to jet fuels.
 
High-resolution 900-MHz MRM was used to measure the change in size of hair follicle, epidermis thickening and dermis in the skin after jet fuel exposure. A number of imaging techniques utilized included magnetization transfer contrast (MTC), spin-lattice relaxation constant (T1-weighting), combination of T2-weighting with magnetic field inhomogeneity (T2*-weighting), magnetization transfer weighting, diffusion tensor weighting and chemical shift weighting.
 
These techniques were used to obtain 2D slices and 3D multislice-multiecho images with high-contrast resolution and high magnetic resonance signal with better skin details. The segmented color-coded feature spaces after image processing of the epidermis and hair follicle structures were used to compare the toxic exposure to tetradecane, dodecane, hexadecane and JP-8 jet fuels.
 
Jet fuel exposure caused skin damage (erythema) at high temperature in addition to chemical intoxication. Erythema scores of the skin were distinct for jet fuels. The multicontrast enhancement at optimized TE and TR parameters generated high MRM signal of different skin structures. The multiple contrast approach made visible details of skin structures by combining specific information achieved from each of the microimaging techniques. At short echo time, MRM images and digitized histological sections confirmed exfoliated epidermis, dermis thickening and hair follicle atrophy after exposure to jet fuels.
 
MRM data showed correlation with the histopathology data for epidermis thickness (R(2)=0.9052, P<.0002) and hair root area (R(2)=0.88, P<.0002). The toxicity of jet fuels on skin structures was in the order of tetradecane>hexadecane>dodecane. The method showed a sensitivity of 87.5% and a specificity of 75%. By MR image processing, different color-coded skin structures were extracted and 3D shapes of the epidermis and hair follicle size were compared.
 
In conclusion, high-resolution MRM measured the change in skin epidermis and hair follicle size due to toxicity of jet fuels. MRM offers a three-dimensional spatial visualization of the change in skin structures as a method of toxicity evaluation and for comparison of jet fuels. Copyright © 2010 Elsevier Inc. All rights reserved.

PMID: 20663627 [PubMed - as supplied by publisher]

Blog Archive